Estimating Epidemic Severity Rates Jeremy Goldwasser

Time-varying severity rates in epidemiology

- Severity rates express the probability that a primary event at time t will result in serious secondary event, e.g.
 - Case-fatality rate (CFR)
 - Hospitalization-fatality rate (HFR)
- Time-varying or stationary?
 - Most academic work on estimating severity rates assumes stationarity over time.
 - Severity rates constantly change due to new variants, therapeutics, etc.
 - Epidemiologists at the CDC use time-varying rates to analyze new risks.

How Many Americans Are About to Die?

A new analysis shows that the country is on track to pass spring's grimmest record.

By Alexis C. Madrigal and Whet Moser

HE WALL STREET JOURNAL.

Business U.S. Politics Economy Tech Markets & Finance Opinion Arts Lifestyle Real Estate Personal Finance

Winter Warning

July 2020

Aua

The U.S. case fatality rate calculated with a 22-day lag between reported cases and deaths points to wave of new fatalities ahead
Day before Thanksgiving

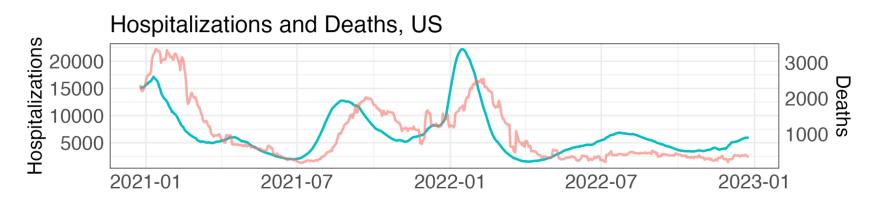
Oct.

Nov.

Sept

Often estimate severity from aggregate data

- Calculating severity rates is straightforward with a line list of patient outcomes.
 - CFR: Observe fraction of patients that tested positive at t who ultimately die.
- Maintaining such a line list may be unrealistic or impossible
 - In this case, severity rates must be estimated from aggregate count data.



– Deaths – Hospitalizations

Standard ratio estimators

- Most estimators for severity rates are simple ratios ("case fatality ratio") between secondary events and at-risk primary events
- The standard time-varying approach is a lagged ratio of aggregate counts:

$$\widehat{\text{CFR}}_t = \frac{\text{Deaths at } t}{\text{Cases at } t - \ell}$$

• A more principled generalization uses the delay distribution:

 $\widehat{\text{CFR}_t} = \frac{\text{Deaths at } t}{\sum_k \{\text{Cases at } t - k\} \times \widehat{\mathbb{P}}(\text{Death is at } k \text{ days})}$

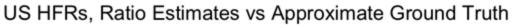
Our work: Understanding the bias of these ratios and proposing statistically sound alternatives.

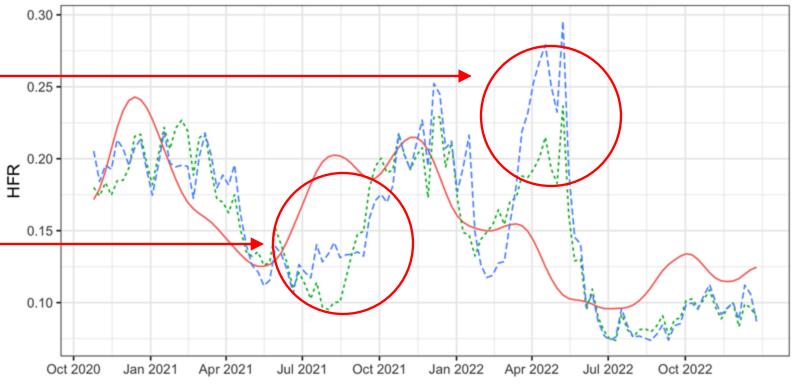
Observed these ratios exhibit huge bias

Notable failures, HFR:

- Signaled enormous, nonexistent surge after Omicron peak – especially lagged ratio.
- Ignored higher risk as Delta took over

Findings robust across parameters, geography, etc.





- Approx. GT ---- Conv. Estimate --- Lagged Estimate

Proposed solution: model the relationship between series

• Let $Y_t/X_{s \le t}$ denote e.g. the number of deaths at time *t* given prior hospitalizations.

$$Y_t | X_{s \le t} = \sum_{k=0}^{\infty} \sum_{i=1}^{t-n} \mathbf{1} \{ i^{\text{th}} \text{ case at } t-k \text{ died at } t \}$$

- We identify this adheres to a *Poisson Binomial* distribution a generalization of the binomial distribution where not all success probabilities are equal.
- While its PMF is intractable, it is well-approximated by a Gaussian with mean $\mu_t = \sum_{k=0}^d x_{t-k} \mathbb{P}(\text{die at } t \mid \text{hosp at } t-k) = \sum_{k=0}^d x_{t-k} \pi_k p_{t-k}$ and variance $\sigma_t^2 = \sum_{k=0}^d x_{t-k} \pi_k p_{t-k} (1 - \pi_k p_{t-k}) \approx \mu_t.$

Proposed solution: approximate MLE of probabilistic model

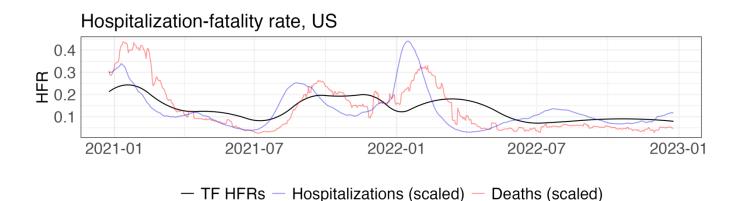
 $\hat{p}_{(t_0-d):T}^{\text{MLE}} = \operatorname{argmax}_p \mathcal{L}(p) = \operatorname{argmin}_p - \log \mathbb{P}(Y_t \; \forall t | X_{s \le t} \; \forall t, \pi, p)$ $\approx \operatorname{argmin}_p \sum_{t=1}^{r} -\log \mathbb{P}(Y_t | X_{s \leq t}, \pi, p)$ Correlation is negligible $t = t_{\cap}$ $\approx \operatorname{argmin}_{p} \sum_{t=1}^{T} -\log \Phi(\frac{Y_{t} - \mu_{t}(p)}{\sigma_{t}(p)})$ Normal approximation at all t $\approx \operatorname{argmin}_{p} \sum_{t=1}^{T} \frac{(Y_{t} - \mu_{t}(p))^{2}}{\sigma_{t}^{2}(p)}$ Ignore variance term $\approx \operatorname{argmin}_{p} \sum_{t=-t}^{T} \frac{1}{\hat{\mu}_{t}} (Y_{t} - \sum_{k=0}^{d} X_{t-k} \pi_{k} p_{t-k})^{2}$ Plug-in variance $\approx \operatorname{argmin}_{p} \sum_{t=t_{0}}^{T} \frac{1}{\hat{\mu}_{t}} (Y_{t} - \sum_{k=0}^{d} X_{t-k} \gamma_{k} p_{t-k})^{2}.$ Plug-in delay distribution

Proposed solution: learn severity rates with smoothed MLE

• To find a smooth solution for this overparameterized problem, we maximize the likelihood subject to a *trend filtering* penalty.

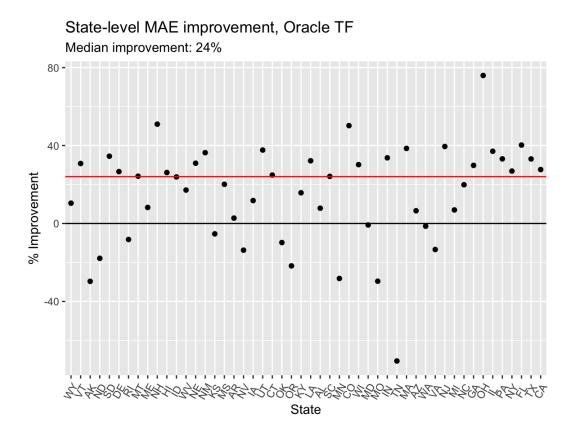
$$\hat{p}^{\text{TF}} = \operatorname{argmin}_{p \ge 0} \sum_{t=t_0}^T \frac{1}{\hat{\mu}_t} (Y_t - \sum_{j=0}^d X_{t-j} \gamma_j p_{t-j})^2 + \lambda \| D^{(k+1)} p \|_1$$

- The difference matrix $D^{(k+1)}$ contains finite differencing operations of order k+1. The L1 penalty encourages p to have sparse $k+1^{th}$ discrete derivatives, so solutions are piecewise polynomials of order k.
 - Trend filtering is more locally adaptive than smoothing splines.

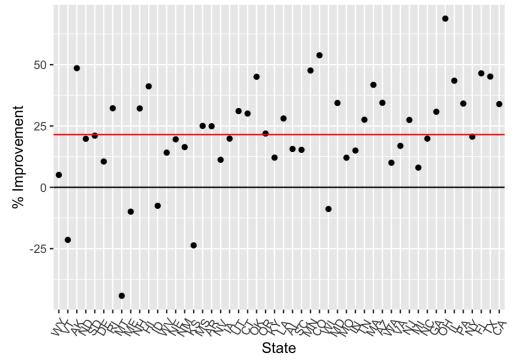


Trend filtering estimator outperforms lagged estimator

- State-level deaths simulated from overdispersed probabilistic model.
- On average, trend filtering **lowers MAE by >20%** over the lagged estimator with both cross validation and oracle tuning.

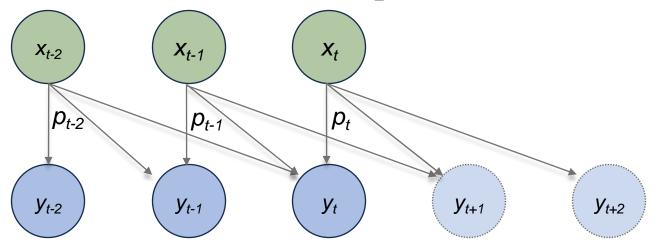


MAE improvement w/ oracle-delay TF. CV tuning. Lagged W to 120. Median imp.: 21%. TF better on 44/50 states.



Ongoing: Adapt trend filtering for real-time setting

• Requires extra regularization to mitigate tail variability, since most recent severity rates used for fewer observed predictions.



- Jahja et al. (2022) used natural trend filtering & tapered smoothing for similar deconvolution problem.
- Also aim to quantify uncertainty of severity estimates and compare to convolutional ratio.

Collaborators

